symjit

Crates.iosymjit
lib.rssymjit
version2.9.1
created_at2025-12-15 02:59:21.595833+00
updated_at2025-12-15 03:10:02.515948+00
descriptiona lightweight just-in-time (JIT) optimizer compiler
homepage
repositoryhttps://github.com/siravan/symjit
max_upload_size
id1985447
size354,843
Shahriar Iravanian (shahriariravanian)

documentation

README

Introduction

Symjit is a lightweight just-in-time (JIT) optimizer compiler for mathematical expressions written in Rust. It was originally designed to compile SymPy (Python’s symbolic algebra package) expressions into machine code and to serve as a bridge between SymPy and numerical routines provided by NumPy and SciPy libraries.

Symjit crate is the core compiler coupled to a Rust interface to expose the JIT functionality to the Rust ecosystem and allow Rust applications to generate code dynamically. Considering its origin, symjit is geared toward compiling mathematical expressions instead of being a general-purpose JIT compiler. Therefore, the only supported types for variables are f64, __m256d (packed f64x4), and implicitly, bool and i32.

Symjit emits AMD64 (x86-64), ARM64 (aarch64), and 64-bit RISC-V (riscv64) machine codes on Linux, Windows, and macOS platforms. SIMD is supported on x86-64 CPUs with AVX instruction sets.

Symjit has three companion packages:

  • FuncBuilder provides a more general code generator akin to llvmlite. It is currently in the early stages of development.
  • SymJit.jl is a Julia wrapper around this library and works with Julia Symbolics.
  • JitEngine.jl is a port of the symjit's code generator to Julia with no binary dependecy. Similar to SymJit.jl, it works and uses Julia Symbolics.

Workflow

  1. Create terminals (variables and constants) and compose expressions using Expr methods:
    • Constructors: var, from, unary, binary, ...
    • Standard algebraic operations: add, mul, ...
    • Standard operators +, -, *, /, %, &, |, ^, !.
    • Unary functions such as sin, exp, and other standard mathematical functions.
    • Binary functions such as pow, min, ...
    • IfElse operation ifelse(cond, true_val, false_val).
    • Heaviside function: heaviside(x), which returns 1 if x >= 0; otherwise 0.
    • Comparison methods eq, ne, lt, le, gt, and ge.
    • Looping constructs sum and prod.
  2. Create a new Compiler object (say, comp) using one of its constructors: new() or with_compile_type(ty: CompilerType).
  3. Fine-tune the optimization passes using opt_level, simd, fastmath, and cse methods (optional).
  4. Define user-defined functions by calling comp.def_unary and comp.def_binary (optional).
  5. Compile by calling comp.compile or comp.compile_params. The result is of type Application (say, app).
  6. Execute the compiled code using one of the app's call functions:
    • call(&[f64]): scalar call.
    • call_params(&[f64], &[f64]): scalar call with parameters.
    • call_simd(&[__m256d]): simd call.
    • call_simd_params(&[__m256d], &[f64]): simd call with parameters.
  7. Optionally, generate a standalone fast function to execute.

Note that you can use the helper functions var(&str) -> Expr, int(i32) -> Expr, double(f64) -> Expr, and boolean(bool) -> f64 to reduce clutter.

Examples

use anyhow::Result;
use symjit::{Compiler, Expr};

pub fn test_scalar() -> Result<()> {
    let x = Expr::var("x");
    let y = Expr::var("y");
    let u = &x + &y;
    let v = &x * &y;

    let mut comp = Compiler::new();
    let mut app = comp.compile(&[x, y], &[u, v])?;
    let res = app.call(&[3.0, 5.0]);
    println!("{:?}", &res);   // prints [8.0, 15.0]

    Ok(())
}

test_scalar is similar to the following basic example in Python/SymPy:

from symjit import compile_func
from sympy import symbols

x, y = symbols('x y')
f = compile_func([x, y], [x+y, x*y])
print(f(3.0, 5.0))  # prints [8.0, 15.0]

A more elaborate example, showcasing having a parameter, changing the optimization level, and using SIMD:

use anyhow::Result;
use symjit::{var, Compiler, Expr};

pub fn test_simd() -> Result<()> {
    use std::arch::x86_64::_mm256_loadu_pd;

    let x = var("x");   // note var instead of Expr::var
    let p = var("p");   // the parameter

    let u = &x.square() * &p;    // x^2 * p
    let mut comp = Compiler::new();
    comp.opt_level(2);  // optional (opt_level 0 to 2; default 1)
    let mut app = comp.compile_params(&[x], &[u], &[p])?;

    let a = &[1.0, 2.0, 3.0, 4.0];
    let a = unsafe { _mm256_loadu_pd(a.as_ptr()) };
    let res = app.call_simd_params(&[a], &[5.0])?;
    println!("{:?}", &res);   // prints [__m256d(5.0, 20.0, 45.0, 80.0)]
    Ok(())
}

Conditional Expression and Loops

Many mathematical formulas need conditional expressions (ifelse) and loops. Following SymPy, Symjit uses reduction loops such as sum and prod. The following example returns the exponential functions:

use symjit::{int, var, Compiler};

fn test_exp() -> Result<()> {
    let x = var("x");
    let i = var("i");   // loop variable
    let j = var("j");   // loop variable

    // u = x^j / factorial(j) for j in j in 0..=50
    let u = x
        .pow(&j)
        .div(&i.prod(&i, &int(1), &j))
        .sum(&j, &int(0), &int(50));

    let mut app = Compiler::new().compile(&[x], &[u])?;
    println!("{:?}", app(&[2.0])[0]); // returns exp(2.0) = 7.38905...
    Ok(())
}

An example showing how to calculate pi using the Leibniz formula:

use symjit::{int, var, Compiler};

fn test_pi() -> Result<()> {
    let n = var("n");
    let i = var("i");   // loop variable
    let j = var("j");   // loop variable

    // numer = if j % 2 == 0 { 4 } else { -4 }
    let numer = j.rem(&int(2)).eq(&int(0)).ifelse(&int(4), &int(-4));
    // denom = j * 2 + 1
    let denom = j.mul(&int(2)).add(&int(1));
    // v = numer / denom for j in 0..=n
    let v = (&numer / &denom).sum(&j, &int(0), &int(&n));

    let mut app = Compiler::new().compile(&[x], &[v])?;
    println!("{:?}", app(&[100000000])[0]); // returns pi
    Ok(())
}

Note that here we are using explicit functions (add, mul, ...) instead of the overloaded operators for clarity.

Fast Functions

Application's call functions need to copy the input slice into the function memory area and then copy the output to a Vec. This process is acceptable for large and complex functions but incurs a penalty for small ones. Therefore, for a certain subset of applications, Symjit can compile to a fast function and return a function pointer. Examples:

use anyhow::Result;
use symjit::{int, var, Compiler, FastFunc};

fn test_fast() -> Result<()> {
    let x = var("x");
    let y = var("y");
    let z = var("z");
    let u = &x * &(&y - &z).pow(&int(2));    // x * (y - z)^2

    let mut comp = Compiler::new();
    let mut app = comp.compile(&[x, y, z], &[u])?;
    let f = app.fast_func()?;

    if let FastFunc::F3(f, _) = f {
        // f is of type extern "C" fn(f64, f64, f64) -> f64         
        let res = f(3.0, 5.0, 9.0);
        println!("fast\t{:?}", &res);
    }

    Ok(())
}

The conditions for a fast function are:

  • A fast function can have 1 to 8 arguments.
  • No SIMD and no parameters.
  • It returns only a single value.

If these conditions are met, you can generate a fast function by calling app.fast_func(), which returns a Result<FastFunc>. FastFunc is an enum with eight variants F1, F2, ..., F8, corresponding to functions with 1 to 8 arguments.

User-Defined Functions

Symjit functions can call into user-defined Rust functions. Currently, only the following function signatures are accepted:

pub type UnaryFunc = extern "C" fn(f64) -> f64;
pub type BinaryFunc = extern "C" fn(f64, f64) -> f64;

For example:

extern "C" fn f(x: f64) -> f64 {
    x.exp()
}

extern "C" fn g(x: f64, y: f64) -> f64 {
    x.ln() * y
}

fn test_external() -> Result<()> {
    let x = Expr::var("x");
    let u = Expr::unary("f_", &x);
    let v = &x * &Expr::binary("g_", &u, &x);

    // v(x) = x * (ln(exp(x)) * x) = x ^ 3

    let mut comp = Compiler::new();
    comp.def_unary("f_", f);
    comp.def_binary("g_", g);
    let mut app = comp.compile(&[x], &[v])?;
    println!("{:?}", app.call(&[5.0])[0]);

    Ok(())
}

Dynamic Expressions

All the examples up to this point use static expressions. Of course, it would have been easier just to use Rust expressions for these examples! The main utility of Symjit for Rust is for dynamic code generation. Here, we provide a simple example to calculate pi using Viete's formula (https://en.wikipedia.org/wiki/Vi%C3%A8te%27s_formula):

fn test_pi_viete(silent: bool) -> Result<()> {
    let x = var("x");
    let mut u = int(1);

    for i in 0..50 {
        let mut t = x.clone();

        for _ in 0..i {
            t = &x + &(&x * &t.sqrt());
        }

        u = &u * &t.sqrt();
    }

    // u has 1275 = 50 * 51 / 2 sqrt operations
    let mut app = Compiler::new().compile(&[x], &[&int(2) / &u])?;
    println!("pi = \t{:?}", app.call(&[0.5])[0]);
    Ok(())
}

C-Interface

In addition to Compiler, this crate provides a C-style interface used by the Python (https://github.com/siravan/symjit) and Julia (https://github.com/siravan/Symjit.jl) packages. This interface is composed of crate functions like compile, execute, and ptr_states,..., and is not needed by the Rust interface but can be used to link symjit to other programming languages.

Commit count: 0

cargo fmt