Crates.io | syntactic-for |
lib.rs | syntactic-for |
version | 0.1.1 |
source | src |
created_at | 2022-12-02 14:21:09.79927 |
updated_at | 2023-01-17 07:20:56.813334 |
description | A syntactic 'for' loop macro |
homepage | |
repository | https://github.com/xlambein/syntactic-for |
max_upload_size | |
id | 728405 |
size | 15,307 |
syntactic-for
A syntactic "for" loop Rust macro.
For example, the following takes the sum of the bit-length of four integer types:
let sum = syntactic_for!{ ty in [ u8, u16, u32, u64 ] {
[$( <$ty>::BITS ),*].into_iter().sum::<u32>()
}};
assert_eq!(sum, 120);
The syntax is as follows:
syntactic_for!{ IDENTIFIER in [ EXPRESSION, EXPRESSION, ... ] {
BODY
}}
where BODY
works similarly to macro_rules!
, that is:
$($IDENTIFIER)SEPARATOR*
will expand and substitute IDENTIFIER
with
each EXPRESSION
, separating the expansions with SEPARATOR
.
SEPARATOR
can be any non-*
punctuation. Hence, the example from above
could also be written without an iterator:
$( <$ty>::BITS )+*
Sum the elements of an array with loop unrolling:
let array = b"oh my, I am getting summed!";
let mut acc = 0u32;
let mut i = 0;
while i <= array.len()-4 {
syntactic_for!{ offset in [ 0, 1, 2, 3 ] {$(
acc += array[i + $offset] as u32;
)*}}
i += 4;
}
for j in i..array.len() {
acc += array[j] as u32;
}
assert_eq!(acc, 2366);
Find the maximum value of an integer type of the given bit size:
let max_size = syntactic_for!{ ty in [ u8, u16, u32, u64, u128 ] {
match bit_size {
$(<$ty>::BITS => <$ty>::MAX as u128,)*
other => panic!("No integer of size {other}"),
}
}};
impl
blocksImplement a trait for a set of types:
syntactic_for!{ ty in [ u8, u16, u32, u64, u128 ] {$(
impl MyTrait for $ty {
// snip.
}
)*}}
A useful design pattern is to define a custom macro that expands to a syntactic loop over a given set of expressions:
#[doc(hidden)]
pub extern crate syntactic_for;
#[macro_export]
macro_rules! for_each_custom_type {
($ident:ident { $($tt:tt)* }) => {
$crate::syntactic_for::syntactic_for! { $ident in [
$crate::CustomType1,
$crate::CustomType2,
// etc.
] { $($tt)* } }
}
}
For example, a library could expose for_each_custom_type
as a way of
letting its users write syntactic loops over a set of types defined in the
library. Then, it becomes possible to add types to that loop inside the
library, whithout requiring any change on the user's end:
// Try and parse each library type in succession, stopping at the first
// success:
fn can_parse(input: &str) -> bool {
my_library::for_each_custom_type! { ty {
$(if let Ok(parsed) = <$ty>::parse(input) {
return true;
})*
}}
return false;
}