systemprompt

Crates.iosystemprompt
lib.rssystemprompt
version0.0.11
created_at2026-01-21 21:28:29.647345+00
updated_at2026-01-25 21:43:54.46409+00
descriptionsystemprompt.io - Extensible AI agent orchestration framework
homepagehttps://systemprompt.io
repositoryhttps://github.com/systempromptio/systemprompt-core
max_upload_size
id2060153
size177,454
Edward Burton (Ejb503)

documentation

https://docs.systemprompt.io

README

systemprompt.io

Production infrastructure for AI agents. Self-hosted or cloud.

The missing layer between AI frameworks and production deployment. Not another SDK - complete infrastructure with authentication, permissions, and multi-agent orchestration built on open standards (MCP, A2A, OAuth2).

Crates.io Documentation License: FSL-1.1-ALv2

Table of Contents

Why systemprompt.io?

Frameworks give you building blocks. We give you the building.

Problem How others solve it systemprompt.io
Agent auth Build it yourself OAuth2/OIDC + WebAuthn built-in
User permissions Build it yourself Role-based, per-agent, per-tool scopes
MCP hosting Run locally only Production deployment with auth
Multi-agent Orchestration libraries A2A protocol with shared state
Deployment Figure it out One command to cloud or self-host

Core capabilities:

  • Complete Runtime: Web API + agent processes + MCP servers with shared auth and database
  • Open Standards: MCP, A2A, OAuth2, WebAuthn - no vendor lock-in
  • Agent-Executable CLI: Your AI manages infrastructure directly via the same CLI you use
  • Native Rust: Async-first on Tokio, zero-cost abstractions
  • Self-Hosted or Cloud: Docker locally, or deploy to isolated VM with managed database
  • 100% Extensible: Build proprietary Rust extensions on the open core

What You Get

A complete platform with built-in:

  • User Authentication: OAuth2/OIDC, sessions, roles, and permissions
  • File Storage: Upload, serve, and manage files with metadata
  • Content Management: Markdown ingestion, search, and publishing
  • AI Integration: Multi-provider LLM support with request logging
  • Analytics: Session tracking, metrics, and usage reporting
  • Agent Orchestration: A2A protocol for agent-to-agent communication
  • MCP Servers: Tool and resource providers for AI clients

Quick Start

Prerequisites

  • Rust 1.75+
  • Docker (for local PostgreSQL) OR systemprompt.io Cloud account

Install the CLI

Option A: Install from crates.io

cargo install systemprompt-cli

Option B: Build from source

git clone https://github.com/systempromptio/systemprompt-core
cd systemprompt-core
cargo build --release -p systemprompt-cli

Setup

All setup is done through the CLI. Choose your database option:

Option 1: Local PostgreSQL (Free)

# Start PostgreSQL in Docker
docker run -d --name systemprompt-db \
  -e POSTGRES_DB=systemprompt \
  -e POSTGRES_USER=systemprompt \
  -e POSTGRES_PASSWORD=systemprompt \
  -p 5432:5432 \
  postgres:16

# Login to systemprompt.io Cloud (free account - enables CLI profile management)
systemprompt cloud auth login

# Create a local tenant with your Docker database
systemprompt cloud tenant create --type local

# Create and configure your profile
systemprompt cloud profile create local

# Run database migrations
systemprompt infra db migrate

# Start services
systemprompt infra services start --all

Option 2: systemprompt.io Cloud (Paid)

Production-ready agentic mesh served over the web. Cloud deployment includes your code and managed PostgreSQL running together as a complete platform. Point your DNS and deploy your web frontend chained to your agents.

# Login to systemprompt.io Cloud
systemprompt cloud auth login

# Create a cloud tenant (provisions your full platform instance)
systemprompt cloud tenant create --region iad

# Create and configure your profile
systemprompt cloud profile create production

# Deploy to cloud
systemprompt cloud deploy --profile production

Your agentic mesh will be deployed in the region of your choice and available at your tenant URL (e.g., https://my-tenant.systemprompt.io). This can be easily used (CNAME) to run your own web accessible agent mesh and domain.

Native MCP Client Support

Works out of the box with any MCP client - Claude Code, Claude Desktop, ChatGPT, and more. All transports are HTTP-native, supported by modern MCP clients.

// claude_desktop_config.json
{
  "mcpServers": {
    "my-server": {
      "url": "https://my-tenant.systemprompt.io/api/v1/mcp/my-server/mcp",
      "transport": "streamable-http"
    }
  }
}

Your AI can now manage your entire infrastructure: deploy updates, query analytics, manage users, and orchestrate agents - all through natural conversation.

Discovery API

Get agent and MCP connection details from the API at any time:

Endpoint Description
/.well-known/agent-card.json Default agent card
/.well-known/agent-cards List all available agents
/.well-known/agent-cards/{name} Specific agent card
/api/v1/agents/registry Full agent registry with status
/api/v1/mcp/registry All MCP servers with endpoints

Config as Code

Define your entire infrastructure in the services/ directory - granular permissions for agents, MCP tools, and users backed by production-grade OAuth2 and WebAuthn:

services/
├── agents/           # Agent definitions with OAuth scopes
│   └── blog.yaml     # security: [oauth2: ["admin"]]
├── mcp/              # MCP servers with per-tool permissions
│   └── content.yaml  # oauth: { required: true, scopes: ["admin"] }
├── skills/           # Reusable agent capabilities
├── ai/               # Provider configs (Anthropic, OpenAI, Gemini)
├── content/          # Markdown content sources
├── scheduler/        # Cron jobs and background tasks
└── web/              # Theme, branding, navigation

Granular Security:

  • Agents: OAuth2 scopes define who can interact with each agent
  • MCP Tools: Per-tool OAuth requirements and audience restrictions
  • Users: WebAuthn passwordless auth with role-based permissions
  • All config changes deploy instantly - no code changes required

CLI - Universal Agent Interface

The CLI executes any task, sends messages to agents, and invokes MCP tools in any environment. Enable local-to-remote and remote-to-remote agentic flows:

# Send a message to an agent
systemprompt admin agents message blog "Write a post about MCP security"

# List available MCP tools
systemprompt admin agents tools content-manager

# Execute from local to remote, or remote to remote
systemprompt cloud deploy --profile production

The same CLI runs locally during development and in production on your cloud instance - your AI can manage infrastructure from anywhere.

Scheduling - Deterministic Tasks

Run scheduled jobs when you need predictable, time-based execution:

# services/scheduler/daily-analytics.yaml
jobs:
  daily_report:
    cron: "0 9 * * *"
    task: "analytics:generate_daily_report"
    enabled: true
# List scheduled jobs
systemprompt infra jobs list

# Run a job manually
systemprompt infra jobs run daily_report

# View execution history
systemprompt infra jobs history

Scheduling complements agentic flows - use agents for dynamic reasoning and schedulers for deterministic tasks.

Building Your Own Project

Use the systemprompt-template to create a new project with the recommended structure for agents, MCP servers, and content.

Using as a Library

Build your own extensions by adding the facade to your Cargo.toml:

[dependencies]
systemprompt = { version = "0.0.1", features = ["full"] }

Architecture

systemprompt.io uses a layered crate architecture:

┌─────────────────────────────────────────────────────────┐
│  ENTRY: api, cli                                        │
├─────────────────────────────────────────────────────────┤
│  APP: runtime, scheduler, generator, sync               │
├─────────────────────────────────────────────────────────┤
│  DOMAIN: users, oauth, ai, agent, mcp, files, content   │
├─────────────────────────────────────────────────────────┤
│  INFRA: database, events, security, config, logging     │
├─────────────────────────────────────────────────────────┤
│  SHARED: models, traits, identifiers, extension         │
└─────────────────────────────────────────────────────────┘

Dependencies flow downward only. Domain crates communicate via traits and events, not direct dependencies.

See full architecture documentation for details on all 25+ crates.

Extension Framework

Extensions enable downstream projects to extend core functionality without modifying it.

use systemprompt_extension::*;

struct MyExtension;
impl Extension for MyExtension { ... }
impl ApiExtension for MyExtension { ... }

register_extension!(MyExtension);
register_api_extension!(MyExtension);

Available extension traits:

Trait Purpose
Extension Base trait - ID, name, version, dependencies
SchemaExtension Database table definitions
ApiExtension HTTP route handlers
ConfigExtensionTyped Config validation at startup
JobExtension Background job definitions
ProviderExtension Custom LLM/tool provider implementations

Extensions are discovered at runtime via the inventory crate.

Versioning

Follows Semantic Versioning:

  • Major: Breaking API changes
  • Minor: New features, backward compatible
  • Patch: Bug fixes, backward compatible

Current version: 0.0.1

License

FSL-1.1-ALv2 (Functional Source License) - see LICENSE for details.

Links

Commit count: 370

cargo fmt