| Crates.io | systemprompt |
| lib.rs | systemprompt |
| version | 0.0.11 |
| created_at | 2026-01-21 21:28:29.647345+00 |
| updated_at | 2026-01-25 21:43:54.46409+00 |
| description | systemprompt.io - Extensible AI agent orchestration framework |
| homepage | https://systemprompt.io |
| repository | https://github.com/systempromptio/systemprompt-core |
| max_upload_size | |
| id | 2060153 |
| size | 177,454 |
Production infrastructure for AI agents. Self-hosted or cloud.
The missing layer between AI frameworks and production deployment. Not another SDK - complete infrastructure with authentication, permissions, and multi-agent orchestration built on open standards (MCP, A2A, OAuth2).
Frameworks give you building blocks. We give you the building.
| Problem | How others solve it | systemprompt.io |
|---|---|---|
| Agent auth | Build it yourself | OAuth2/OIDC + WebAuthn built-in |
| User permissions | Build it yourself | Role-based, per-agent, per-tool scopes |
| MCP hosting | Run locally only | Production deployment with auth |
| Multi-agent | Orchestration libraries | A2A protocol with shared state |
| Deployment | Figure it out | One command to cloud or self-host |
Core capabilities:
A complete platform with built-in:
Option A: Install from crates.io
cargo install systemprompt-cli
Option B: Build from source
git clone https://github.com/systempromptio/systemprompt-core
cd systemprompt-core
cargo build --release -p systemprompt-cli
All setup is done through the CLI. Choose your database option:
# Start PostgreSQL in Docker
docker run -d --name systemprompt-db \
-e POSTGRES_DB=systemprompt \
-e POSTGRES_USER=systemprompt \
-e POSTGRES_PASSWORD=systemprompt \
-p 5432:5432 \
postgres:16
# Login to systemprompt.io Cloud (free account - enables CLI profile management)
systemprompt cloud auth login
# Create a local tenant with your Docker database
systemprompt cloud tenant create --type local
# Create and configure your profile
systemprompt cloud profile create local
# Run database migrations
systemprompt infra db migrate
# Start services
systemprompt infra services start --all
Production-ready agentic mesh served over the web. Cloud deployment includes your code and managed PostgreSQL running together as a complete platform. Point your DNS and deploy your web frontend chained to your agents.
# Login to systemprompt.io Cloud
systemprompt cloud auth login
# Create a cloud tenant (provisions your full platform instance)
systemprompt cloud tenant create --region iad
# Create and configure your profile
systemprompt cloud profile create production
# Deploy to cloud
systemprompt cloud deploy --profile production
Your agentic mesh will be deployed in the region of your choice and available at your tenant URL (e.g., https://my-tenant.systemprompt.io). This can be easily used (CNAME) to run your own web accessible agent mesh and domain.
Works out of the box with any MCP client - Claude Code, Claude Desktop, ChatGPT, and more. All transports are HTTP-native, supported by modern MCP clients.
// claude_desktop_config.json
{
"mcpServers": {
"my-server": {
"url": "https://my-tenant.systemprompt.io/api/v1/mcp/my-server/mcp",
"transport": "streamable-http"
}
}
}
Your AI can now manage your entire infrastructure: deploy updates, query analytics, manage users, and orchestrate agents - all through natural conversation.
Get agent and MCP connection details from the API at any time:
| Endpoint | Description |
|---|---|
/.well-known/agent-card.json |
Default agent card |
/.well-known/agent-cards |
List all available agents |
/.well-known/agent-cards/{name} |
Specific agent card |
/api/v1/agents/registry |
Full agent registry with status |
/api/v1/mcp/registry |
All MCP servers with endpoints |
Define your entire infrastructure in the services/ directory - granular permissions for agents, MCP tools, and users backed by production-grade OAuth2 and WebAuthn:
services/
├── agents/ # Agent definitions with OAuth scopes
│ └── blog.yaml # security: [oauth2: ["admin"]]
├── mcp/ # MCP servers with per-tool permissions
│ └── content.yaml # oauth: { required: true, scopes: ["admin"] }
├── skills/ # Reusable agent capabilities
├── ai/ # Provider configs (Anthropic, OpenAI, Gemini)
├── content/ # Markdown content sources
├── scheduler/ # Cron jobs and background tasks
└── web/ # Theme, branding, navigation
Granular Security:
The CLI executes any task, sends messages to agents, and invokes MCP tools in any environment. Enable local-to-remote and remote-to-remote agentic flows:
# Send a message to an agent
systemprompt admin agents message blog "Write a post about MCP security"
# List available MCP tools
systemprompt admin agents tools content-manager
# Execute from local to remote, or remote to remote
systemprompt cloud deploy --profile production
The same CLI runs locally during development and in production on your cloud instance - your AI can manage infrastructure from anywhere.
Run scheduled jobs when you need predictable, time-based execution:
# services/scheduler/daily-analytics.yaml
jobs:
daily_report:
cron: "0 9 * * *"
task: "analytics:generate_daily_report"
enabled: true
# List scheduled jobs
systemprompt infra jobs list
# Run a job manually
systemprompt infra jobs run daily_report
# View execution history
systemprompt infra jobs history
Scheduling complements agentic flows - use agents for dynamic reasoning and schedulers for deterministic tasks.
Use the systemprompt-template to create a new project with the recommended structure for agents, MCP servers, and content.
Build your own extensions by adding the facade to your Cargo.toml:
[dependencies]
systemprompt = { version = "0.0.1", features = ["full"] }
systemprompt.io uses a layered crate architecture:
┌─────────────────────────────────────────────────────────┐
│ ENTRY: api, cli │
├─────────────────────────────────────────────────────────┤
│ APP: runtime, scheduler, generator, sync │
├─────────────────────────────────────────────────────────┤
│ DOMAIN: users, oauth, ai, agent, mcp, files, content │
├─────────────────────────────────────────────────────────┤
│ INFRA: database, events, security, config, logging │
├─────────────────────────────────────────────────────────┤
│ SHARED: models, traits, identifiers, extension │
└─────────────────────────────────────────────────────────┘
Dependencies flow downward only. Domain crates communicate via traits and events, not direct dependencies.
See full architecture documentation for details on all 25+ crates.
Extensions enable downstream projects to extend core functionality without modifying it.
use systemprompt_extension::*;
struct MyExtension;
impl Extension for MyExtension { ... }
impl ApiExtension for MyExtension { ... }
register_extension!(MyExtension);
register_api_extension!(MyExtension);
Available extension traits:
| Trait | Purpose |
|---|---|
Extension |
Base trait - ID, name, version, dependencies |
SchemaExtension |
Database table definitions |
ApiExtension |
HTTP route handlers |
ConfigExtensionTyped |
Config validation at startup |
JobExtension |
Background job definitions |
ProviderExtension |
Custom LLM/tool provider implementations |
Extensions are discovered at runtime via the inventory crate.
Follows Semantic Versioning:
Current version: 0.0.1
FSL-1.1-ALv2 (Functional Source License) - see LICENSE for details.