Crates.io | tabu |
lib.rs | tabu |
version | 0.1.1 |
source | src |
created_at | 2022-12-29 15:17:30.299289 |
updated_at | 2022-12-29 15:18:37.280885 |
description | Provides local search functionality in general, plus derived applications such as local search based clustering |
homepage | |
repository | https://github.com/maxsnijders/tabu |
max_upload_size | |
id | 747393 |
size | 15,478 |
Provides local search functionality and related algorithms Currently provided search algorithms:
Currently provided derived applications:
for detailed examples, see the included tests.
The following code runs a tabu search on a quadratic optimization problem from a list of initial state.
mod tabu;
use tabu::tabu_search;
use itertools::Itertools;
for initial_state in vec![(10, 10), (0, 0), (7, 0), (6, 5)] {
let step = 1;
let descendants = |&(x, y): &(i32, i32)| {
(-1..2)
.cartesian_product(-1..2)
.map(move |(dx, dy)| (x + dx * step, y + dy * step))
};
let cost = |&(x, y): &(i32, i32)| ((x - 5).pow(2) + (y - 5).pow(2)) as f64;
let max_iterations = 100;
let stopping_cost = 0.0;
let best = tabu_search(
initial_state,
descendants,
cost,
max_iterations,
Some(stopping_cost),
);
assert_eq!(best, (5, 5));
}
The following code clusters a set of integers into two clusters, with the cost being the diameter of the largest cluster.
mod tabu;
use tabu::{cluster_tabu, diameter};
let items = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let n_clusters = 2;
let max_iterations = 100;
let stopping_cost = None; // Stopping cost of None means that we'll only stop when we've exhausted all our options or we've hit the iteration limit
let mut clusters: Vec<Vec<i32>> = cluster_tabu(
items,
// The cost function - note that it's easy to write different cost functions here.
|clusters: &Vec<Vec<i32>>| {
clusters
.iter()
.map(|cluster| {
diameter(cluster, |x, y| (x - y).abs() as f64).unwrap_or(f64::NEG_INFINITY)
})
.fold(f64::NEG_INFINITY, f64::max)
},
n_clusters,
max_iterations,
stopping_cost,
)
.into_iter()
.map(|mut cluster| {
cluster.sort();
cluster
})
.collect();
clusters.sort();
assert_eq!(clusters.len(), n_clusters);
assert_eq!(clusters, vec![vec![1, 2, 3, 4, 5], vec![6, 7, 8, 9, 10]]);