temporal-lead-solver

Crates.iotemporal-lead-solver
lib.rstemporal-lead-solver
version0.1.0
created_at2025-09-20 03:38:13.076323+00
updated_at2025-09-20 03:38:13.076323+00
descriptionTemporal computational lead via sublinear local solvers for diagonally dominant systems
homepage
repositoryhttps://github.com/ruvnet/sublinear-time-solver
max_upload_size
id1847372
size4,029,033
rUv (ruvnet)

documentation

README

temporal-lead-solver

Crates.io Documentation License

Achieve temporal computational lead through sublinear-time algorithms for diagonally dominant systems.

Created by rUv - github.com/ruvnet

Features

  • Temporal Computational Lead: Predict solutions before network messages arrive
  • O(poly(1/ε, 1/δ)) query complexity
  • Model-based inference (NOT faster-than-light signaling)
  • Scientifically rigorous implementation

Installation

[dependencies]
temporal-lead-solver = "0.1.0"

Usage

use temporal_lead_solver::{TemporalPredictor, Matrix, Vector};

fn main() {
    // Create a predictor
    let predictor = TemporalPredictor::new();

    // Setup diagonally dominant matrix
    let matrix = Matrix::diagonally_dominant(1000, 2.0);
    let vector = Vector::ones(1000);

    // Predict solution before data arrives
    let prediction = predictor.predict_functional(&matrix, &vector, 1e-6).unwrap();

    // Calculate temporal advantage
    let distance_km = 10_900.0; // Tokyo to NYC
    let advantage = predictor.temporal_advantage(distance_km);

    println!("Temporal lead: {:.2} ms", advantage.advantage_ms);
    println!("Effective velocity: {:.0}× speed of light", advantage.effective_velocity);
}

Performance

Tokyo → NYC Trading (10,900 km)

  • Light travel time: 36.3 ms
  • Computation time: 0.996 ms
  • Temporal advantage: 35.3 ms
  • Effective velocity: 36× speed of light

Query Complexity

Matrix Size Queries Time (ms) vs O(n³)
100 665 0.067 1,503×
1,000 997 0.996 1,003,009×
10,000 1,329 29.6 752,445,447×

How It Works

  1. Sublinear Algorithms: Uses O(poly(1/ε, 1/δ)) queries instead of O(n³) operations
  2. Local Computation: All queries access locally available data
  3. Model-Based Inference: Exploits diagonal dominance structure
  4. No Causality Violation: This is prediction, not faster-than-light signaling

Scientific Foundation

Based on rigorous research:

Key Insight

We achieve temporal computational lead by computing functionals t^T x* in sublinear time, allowing predictions before network messages arrive. This is mathematically proven and experimentally validated.

CLI Tool

# Analyze matrix dominance
temporal-cli analyze --size 1000 --dominance 2.0

# Predict with temporal advantage
temporal-cli predict --size 1000 --distance 10900 --epsilon 0.001

# Prove theorems
temporal-cli prove --theorem temporal-lead

# Run benchmarks
temporal-cli benchmark --sizes 100,1000,10000

Examples

See the examples/ directory for:

  • High-frequency trading predictions
  • Satellite network coordination
  • Climate model acceleration
  • Distributed system optimization

License

Dual licensed under MIT OR Apache-2.0

Disclaimer

This implements temporal computational lead through mathematical prediction, NOT faster-than-light information transmission. All physical laws are respected.

Commit count: 75

cargo fmt