| Crates.io | tensorlogic-scirs-backend |
| lib.rs | tensorlogic-scirs-backend |
| version | 0.1.0-alpha.2 |
| created_at | 2025-11-07 22:42:34.786437+00 |
| updated_at | 2026-01-03 21:06:42.75559+00 |
| description | SciRS2-powered tensor execution backend for TensorLogic |
| homepage | https://github.com/cool-japan/tensorlogic |
| repository | https://github.com/cool-japan/tensorlogic |
| max_upload_size | |
| id | 1922301 |
| size | 804,379 |
Production-Ready SciRS2-Powered Tensor Execution Backend for TensorLogic
Production-ready execution backend that runs EinsumGraph computations using SciRS2 (Scientific Computing in Rust v2) for high-performance CPU/SIMD tensor operations.
Input: EinsumGraph from tensorlogic-compiler
Output: Computed tensor values with full autodiff support
use tensorlogic_scirs_backend::Scirs2Exec;
use tensorlogic_infer::TlAutodiff;
use tensorlogic_compiler::compile_to_einsum;
use tensorlogic_ir::{TLExpr, Term};
// Define a rule: knows(x, y)
let rule = TLExpr::pred("knows", vec![Term::var("x"), Term::var("y")]);
// Compile to execution graph
let graph = compile_to_einsum(&rule)?;
// Create executor and provide input tensor
let mut executor = Scirs2Exec::new();
let knows_matrix = Scirs2Exec::from_vec(
vec![1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0],
vec![3, 3]
)?;
executor.add_tensor("knows[ab]", knows_matrix);
// Execute forward pass
let result = executor.forward(&graph)?;
// Backward pass for training
let grad_out = Scirs2Exec::ones(result.shape().to_vec())?;
let mut grads = std::collections::HashMap::new();
grads.insert("output", grad_out);
let input_grads = executor.backward(&graph, grads)?;
parallel feature)EinsumGraph (from compiler)
↓
Scirs2Exec::forward()
↓
For each EinsumNode (topological order):
- Einsum → scirs2_linalg::einsum() [tensor contraction]
- ElemUnary → ReLU/Sigmoid/OneMinus
- ElemBinary → Add/Sub/Mul/Div/Comparisons
- Reduce → Sum/Max/Min/Mean/Product over axes
↓
TensorOutput (scirs2-core ArrayD<f64>)
↓
Scirs2Exec::backward() [optional, for training]
↓
Gradients (for each input tensor)
// Matrix multiplication: C = AB
// Compiled as einsum("ik,kj->ij", A, B)
let a = Scirs2Exec::from_vec(vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0], vec![2, 3])?;
let b = Scirs2Exec::from_vec(vec![7.0, 8.0, 9.0, 10.0, 11.0, 12.0], vec![3, 2])?;
// Result via graph execution: 2x2 matrix
// ReLU: max(0, x)
// Sigmoid: 1 / (1 + exp(-x))
// OneMinus: 1 - x
// Gradient support:
// - ReLU: grad * (input > 0)
// - Sigmoid: grad * sigmoid(x) * (1 - sigmoid(x))
// Arithmetic: Add, Subtract, Multiply, Divide
// Comparisons: Eq, Lt, Gt, Lte, Gte (return 0.0 or 1.0)
// Logical: AND (multiply), OR (max or prob_sum), XOR, NAND, NOR
// All with proper gradient computation
// Sum, Max, Min, Mean, Product over specified axes
// With gradient broadcasting back to original shape
// Example: Sum over axis 1
// Input: [3, 4] → Output: [3]
// Gradient: [3] → broadcasted to [3, 4] (all ones)
The backend includes production-ready graph optimization passes that significantly improve performance and reduce memory usage.
use tensorlogic_scirs_backend::{CompiledGraph, OptimizationConfig};
// Aggressive optimizations (all enabled)
let config = OptimizationConfig::aggressive();
// Conservative optimizations (only safe passes)
let config = OptimizationConfig::conservative();
// No optimizations
let config = OptimizationConfig::none();
// Custom configuration
let config = OptimizationConfig {
enable_constant_folding: true,
enable_fusion: true,
enable_dce: true,
enable_cse: true,
enable_layout_opt: false,
enable_memory_planning: true,
};
use tensorlogic_scirs_backend::CompiledGraph;
// Automatic optimization with defaults
let compiled = CompiledGraph::compile(graph);
// Custom optimization
let config = OptimizationConfig::aggressive();
let compiled = CompiledGraph::compile_with_config(graph, &config);
// Access optimization statistics
let stats = compiled.stats();
println!("Original ops: {}", stats.original_ops);
println!("Optimized ops: {}", stats.optimized_ops);
println!("Eliminated: {}", stats.eliminated_ops);
println!("Fused: {}", stats.fused_ops);
println!("Compilation time: {:.2}ms", stats.compilation_time_ms);
// Execute the optimized graph
let result = executor.forward(compiled.graph())?;
Dead Code Elimination (DCE)
Common Subexpression Elimination (CSE)
Constant Folding
Operation Fusion
Layout Optimization
The compiler performs liveness analysis to plan memory allocation:
if let Some(plan) = compiled.memory_plan {
println!("Max live tensors: {}", plan.max_live_tensors);
println!("Peak memory: {} bytes", plan.peak_memory_bytes);
println!("Reuse opportunities: {}", plan.reuse_opportunities.len());
// Reuse opportunities are (source, dest) pairs
for (src, dest) in plan.reuse_opportunities {
println!("Can reuse tensor {} for tensor {}", src, dest);
}
}
Benefits:
Execute operations in-place to eliminate memory allocations and improve performance.
use tensorlogic_scirs_backend::{InplaceExecutor, can_execute_inplace};
let mut executor = InplaceExecutor::new();
let mut tensor = /* ... */;
// Check if operation supports in-place execution
if can_execute_inplace("relu") {
executor.execute_inplace_unary("relu", &mut tensor)?;
}
// Binary operations (modifies lhs in-place)
let mut lhs = /* ... */;
let rhs = /* ... */;
executor.execute_inplace_binary("add", &mut lhs, &rhs)?;
// Scalar operations
executor.execute_inplace_scalar("mul", &mut tensor, 2.0)?;
Unary Operations (11):
relu, sigmoid, tanhabs, neg, exp, log, sqrt, squareoneminus, clipBinary Operations (6):
add, subtract, multiply, divide, min, maxScalar Operations (7):
add_scalar, sub_scalar, mul_scalar, div_scalarpow, clamp_min, clamp_max// Get execution statistics
let stats = executor.statistics();
println!("In-place ops: {}", stats.inplace_ops);
println!("Non-in-place ops: {}", stats.non_inplace_ops);
println!("In-place %: {:.1}%", stats.inplace_percentage());
println!("Memory saved: {}", stats.format_memory_saved());
// Output: "Memory saved: 2.50 MB"
// Reset statistics
executor.reset_stats();
The executor tracks tensor aliasing to prevent unsafe in-place operations:
let mut executor = InplaceExecutor::new();
// Mark tensor as aliased (shared ownership)
executor.mark_aliased(tensor_id);
// Check safety
if executor.can_execute_inplace(tensor_id) {
// Safe to modify in-place
} else {
// Must allocate new tensor
}
// Clear aliasing information when ownership is released
executor.clear_aliasing();
Performance Benefits:
Save and restore executor state during training for mid-training checkpoints, recovery from failures, and incremental compilation.
use tensorlogic_scirs_backend::{Checkpoint, CheckpointConfig};
let mut executor = Scirs2Exec::new();
// ... training loop ...
// Save checkpoint at iteration 100
let checkpoint = Checkpoint::from_executor(&executor, 100)?;
checkpoint.save("checkpoint_iter_100.json")?;
// Later, restore from checkpoint
let checkpoint = Checkpoint::load("checkpoint_iter_100.json")?;
let mut executor = checkpoint.restore()?;
// Training checkpoint (includes forward tape for gradients)
let config = CheckpointConfig::for_training();
// Inference checkpoint (compressed, no tape)
let config = CheckpointConfig::for_inference();
// Incremental checkpoint (only changed tensors)
let config = CheckpointConfig::incremental();
// Custom configuration
let config = CheckpointConfig {
enable_compression: true,
include_tape: true,
verify_checksum: true,
incremental: false,
};
let checkpoint = Checkpoint::from_executor_with_config(&executor, iteration, &config)?;
let mut checkpoint = Checkpoint::from_executor(&executor, 50)?;
// Add custom metadata
checkpoint.add_metadata("learning_rate".to_string(), "0.001".to_string());
checkpoint.add_metadata("optimizer".to_string(), "adam".to_string());
checkpoint.add_metadata("loss".to_string(), "0.523".to_string());
// Save with metadata
checkpoint.save("checkpoint_epoch_50.json")?;
// Load and access metadata
let checkpoint = Checkpoint::load("checkpoint_epoch_50.json")?;
println!("Iteration: {}", checkpoint.metadata.iteration);
println!("Timestamp: {}", checkpoint.metadata.timestamp);
println!("LR: {}", checkpoint.get_metadata("learning_rate").unwrap());
println!("Size: {}", checkpoint.size_human_readable());
For managing multiple checkpoints with automatic cleanup:
use tensorlogic_scirs_backend::CheckpointManager;
// Create manager
let mut manager = CheckpointManager::new("./checkpoints")?;
manager.set_max_checkpoints(Some(5)); // Keep last 5 checkpoints
// Save checkpoints during training
for iteration in 0..100 {
// ... training step ...
if iteration % 10 == 0 {
let path = manager.save_checkpoint(&executor, iteration)?;
println!("Saved checkpoint: {:?}", path);
}
}
// Load the latest checkpoint
let checkpoint = manager.load_latest()?;
let mut executor = checkpoint.restore()?;
// List all checkpoints
for path in manager.list_checkpoints()? {
println!("Checkpoint: {:?}", path);
}
Use Cases:
use tensorlogic_scirs_backend::{TlBackendError, TlBackendResult};
// Comprehensive error types
match result {
Err(TlBackendError::ShapeMismatch(err)) => {
println!("Shape error: {}", err);
}
Err(TlBackendError::NumericalError(err)) => {
println!("Numerical issue: {:?}", err.kind);
}
Err(TlBackendError::DeviceError(err)) => {
println!("Device error: {}", err);
}
Ok(value) => { /* success */ }
}
use tensorlogic_scirs_backend::{ExecutionTracer, TraceLevel};
// Enable detailed tracing
let mut tracer = ExecutionTracer::new(TraceLevel::Debug);
// Operations are automatically traced
// Access trace events
for event in tracer.events() {
println!("{}", event); // Shows operation, duration, inputs/outputs
}
// Get statistics
let stats = tracer.stats();
println!("Total ops: {}", stats.total_operations);
println!("Total time: {:?}", stats.total_duration);
use tensorlogic_scirs_backend::{FallbackConfig, sanitize_tensor};
// Configure fallback behavior
let config = FallbackConfig::permissive()
.with_nan_replacement(0.0)
.with_inf_replacement(1e10, -1e10);
// Sanitize tensors before operations
let clean_tensor = sanitize_tensor(&input, &config, "my_operation")?;
// Safe operations
use tensorlogic_scirs_backend::fallback::{safe_div, safe_log, safe_sqrt};
let result = safe_div(&a, &b, 1e-10); // Avoids division by zero
use tensorlogic_scirs_backend::Scirs2Exec;
// Enable memory pooling
let mut executor = Scirs2Exec::new();
executor.enable_pooling();
// Check pooling statistics
let stats = executor.pool_stats();
println!("Reuse rate: {:.1}%", stats.reuse_rate * 100.0);
use tensorlogic_scirs_backend::gradient_check::{check_gradients, GradientCheckConfig};
// Verify gradient correctness
let config = GradientCheckConfig::default()
.with_epsilon(1e-5)
.with_rtol(1e-4)
.with_atol(1e-6);
let report = check_gradients(&graph, &executor, &config)?;
if report.all_passed {
println!("All gradients correct!");
} else {
for result in &report.results {
println!("{}: max_error = {:.2e}", result.tensor_name, result.max_abs_diff);
}
}
Requires: parallel feature flag
Multi-threaded execution automatically detects independent operations and executes them in parallel using Rayon.
[dependencies]
tensorlogic-scirs-backend = { version = "0.1", features = ["parallel"] }
use tensorlogic_scirs_backend::ParallelScirs2Exec;
use tensorlogic_infer::TlAutodiff;
// Create parallel executor
let mut executor = ParallelScirs2Exec::new();
// Optional: Configure thread pool
executor.set_num_threads(4);
// Add input tensors
executor.add_tensor("p1", tensor1);
executor.add_tensor("p2", tensor2);
// Execute with automatic parallelization
let result = executor.forward(&graph)?;
// Check parallelization statistics
if let Some(stats) = executor.execution_stats() {
println!("Parallel ops: {}", stats.parallel_ops);
println!("Sequential ops: {}", stats.sequential_ops);
println!("Estimated speedup: {:.2}x", stats.estimated_speedup);
}
use tensorlogic_scirs_backend::{ParallelConfig, ParallelScirs2Exec};
// Custom configuration
let config = ParallelConfig {
num_threads: Some(8), // Use 8 threads (None = all cores)
min_parallel_ops: 3, // Minimum ops per level for parallelization
enable_pooling: true, // Enable memory pooling
};
let mut executor = ParallelScirs2Exec::with_config(config);
// Execute as normal
let result = executor.forward(&graph)?;
The parallel executor:
Example Graph:
Op0: c = relu(a) │ Level 0: Execute Op0 and Op1 in parallel
Op1: d = sigmoid(b) │
Op2: e = c + d │ Level 1: Execute Op2 sequentially
Op3: f = relu(e) │ Level 2: Execute Op3 sequentially
AND(p1, p2, p3, p4))EXISTS(j, NOT(P)))min_parallel_ops run sequentially# Run parallel performance benchmarks
cargo bench --bench parallel_performance --features parallel
# Compare sequential vs parallel
cargo bench --bench parallel_performance --features parallel -- "high_parallelism"
[dependencies]
tensorlogic-scirs-backend = "0.1"
[dependencies]
tensorlogic-scirs-backend = { version = "0.1", features = ["simd"] }
Enables vectorized operations for element-wise ops and reductions.
[dependencies]
tensorlogic-scirs-backend = { version = "0.1", features = ["parallel", "simd"] }
Combines multi-threaded execution with SIMD vectorization for maximum performance.
[dependencies]
tensorlogic-scirs-backend = { version = "0.1", features = ["gpu"] }
Note: CUDA device detection is already available! The backend can detect NVIDIA GPUs using nvidia-smi and report device information (name, memory, compute capability). Full GPU execution support will be added when scirs2-core gains GPU features.
The backend supports multiple execution modes for different performance/debugging tradeoffs:
use tensorlogic_scirs_backend::{ExecutionMode, ExecutionConfig, Scirs2Exec};
// Eager mode (default) - immediate execution
let config = ExecutionConfig::eager();
// Graph mode - compile and optimize before execution
let config = ExecutionConfig::graph()
.with_optimizations(true)
.with_memory_planning(true);
// JIT mode (future) - compile to native code
// let config = ExecutionConfig::jit();
Graph Compilation Example:
use tensorlogic_scirs_backend::execution_mode::CompiledGraph;
// Compile a graph for optimized execution
let compiled = CompiledGraph::compile(graph);
// View compilation statistics
println!("Original ops: {}", compiled.stats().original_ops);
println!("Optimized ops: {}", compiled.stats().optimized_ops);
println!("Compilation time: {:.2}ms", compiled.stats().compilation_time_ms);
// Execute the optimized graph
let result = executor.forward(compiled.graph())?;
Manage compute devices (CPU/GPU) with the device API:
use tensorlogic_scirs_backend::{DeviceManager, Device, DeviceType};
use tensorlogic_scirs_backend::{detect_cuda_devices, is_cuda_available};
// Query available devices (automatically detects CUDA via nvidia-smi)
let manager = DeviceManager::new();
println!("Available devices: {:?}", manager.available_devices());
// Check for GPU availability
if manager.has_gpu() {
println!("GPU devices found: {}", manager.count_devices(DeviceType::Cuda));
}
// Detailed CUDA device detection
if is_cuda_available() {
let cuda_devices = detect_cuda_devices();
for device_info in cuda_devices {
println!("GPU {}: {} ({} MB)",
device_info.index,
device_info.name,
device_info.memory_mb);
if let Some((major, minor)) = device_info.compute_capability {
println!(" Compute Capability: {}.{}", major, minor);
}
}
}
// Select a specific device
let device = Device::cuda(0); // CUDA GPU 0
let device = Device::cpu(); // CPU
let device = Device::metal(); // Apple Metal
// Check if device is available
if manager.is_available(&device) {
manager.set_default_device(device)?;
}
Supported Device Types:
CUDA Detection: The backend now includes automatic CUDA device detection using nvidia-smi. When you create a DeviceManager, it will automatically detect available CUDA devices and populate the device list. This allows you to prepare your code for GPU execution even before full GPU support is implemented.
Control numerical precision for memory/speed tradeoffs:
use tensorlogic_scirs_backend::{Precision, PrecisionConfig, Scalar};
// Different precision modes
let config = PrecisionConfig::f32(); // 32-bit (faster, less memory)
let config = PrecisionConfig::f64(); // 64-bit (more accurate, default)
let config = PrecisionConfig::mixed_precision(); // Mixed 16/32-bit
// Configure mixed precision training
let config = PrecisionConfig::mixed_precision()
.with_loss_scale(2048.0)
.with_dynamic_loss_scaling(true);
// Query precision properties
println!("Precision: {}", Precision::F32);
println!("Memory savings: {:.1}%", Precision::F32.memory_savings() * 100.0);
Precision Options:
Generic Scalar Operations:
The Scalar trait abstracts over f32/f64:
use tensorlogic_scirs_backend::Scalar;
fn compute<T: Scalar>(x: T, y: T) -> T {
x.sqrt() + y.exp()
}
let result_f32 = compute(2.0f32, 1.0f32);
let result_f64 = compute(2.0f64, 1.0f64);
This crate strictly adheres to the SciRS2 integration policy:
// ✓ Correct: Use SciRS2
use scirs2_core::ndarray::{Array, ArrayD, Axis};
use scirs2_core::array;
use scirs2_linalg::einsum;
// ✗ Wrong: Never import these directly
use ndarray::Array2; // ❌
use rand::thread_rng; // ❌
use num_complex::Complex64; // ❌
All tensor operations, linear algebra, and future autograd features use SciRS2.
# Run all tests
cargo nextest run -p tensorlogic-scirs-backend
# Run with SIMD
cargo nextest run -p tensorlogic-scirs-backend --features simd
# Run with parallel execution
cargo nextest run -p tensorlogic-scirs-backend --features parallel
# Run property tests
cargo test -p tensorlogic-scirs-backend --test proptests
# Run benchmarks
cargo bench -p tensorlogic-scirs-backend
# Run parallel benchmarks
cargo bench -p tensorlogic-scirs-backend --bench parallel_performance --features parallel
152 tests, all passing:
Module breakdown:
Uses proptest to verify mathematical properties:
a + b = b + a(a * b) * c = a * (b * c)a * (b + c) = a*b + a*csum(a*x + b*y) = a*sum(x) + b*sum(y)0 ≤ sigmoid(x) ≤ 1cargo bench -p tensorlogic-scirs-backend
Available benchmarks:
forward_pass: Forward execution throughputsimd_comparison: CPU vs SIMD performancememory_footprint: Memory usage trackinggradient_stability: Backward pass stabilitythroughput: Operations per second--features simdFull example with training:
use tensorlogic_compiler::compile_to_einsum;
use tensorlogic_scirs_backend::Scirs2Exec;
use tensorlogic_infer::TlAutodiff;
use tensorlogic_ir::{TLExpr, Term};
// Define rule: knows(x,y) ∧ knows(y,z) → knows(x,z) (transitivity)
let knows_xy = TLExpr::pred("knows", vec![Term::var("x"), Term::var("y")]);
let knows_yz = TLExpr::pred("knows", vec![Term::var("y"), Term::var("z")]);
let premise = TLExpr::and(knows_xy, knows_yz);
// Compile to graph
let graph = compile_to_einsum(&premise)?;
// Setup executor with input data
let mut executor = Scirs2Exec::new();
let knows_matrix = Scirs2Exec::from_vec(
vec![1.0, 0.0, 1.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0],
vec![3, 3]
)?;
executor.add_tensor("knows[ab]", knows_matrix);
// Forward pass
let result = executor.forward(&graph)?;
println!("Result shape: {:?}", result.shape());
// Backward pass for training
let loss_grad = Scirs2Exec::ones(result.shape().to_vec())?;
let mut grads = std::collections::HashMap::new();
grads.insert("output", loss_grad);
let input_grads = executor.backward(&graph, grads)?;
// Access gradients
for (name, grad) in input_grads.tensors.iter() {
println!("Gradient for {}: {:?}", name, grad.shape());
}
Key public types:
Scirs2Exec: Main executor implementing TlAutodiff traitTlBackendError: Comprehensive error typesExecutionTracer: Debug tracing with multiple levelsFallbackConfig: Numerical stability configurationForwardTape: Stores intermediate values for backward passParallelBatchExecutor: Batch processing with parallelizationProfiledScirs2Exec: Performance profiling wrapperSee full API docs for details.
Current limitations:
See TODO.md for the complete roadmap (72% complete, 65/90 tasks).
Next priorities:
When contributing:
cargo clippy -- -D warnings (zero warnings policy)cargo fmtApache-2.0
Status: 🎉 Production Ready (v0.1.0-alpha.2) **Last Updated: 2025-12-16 Tests: 104/104 passing (100%) Completion: 72% (65/90 tasks) Part of: TensorLogic Ecosystem