tokio-rustls-acme

Crates.iotokio-rustls-acme
lib.rstokio-rustls-acme
version0.6.0
sourcesrc
created_at2023-05-22 09:01:53.920023
updated_at2024-11-27 09:58:13.210863
descriptionAutomatic TLS certificate management using rustls
homepage
repositoryhttps://github.com/n0-computer/tokio-rustls-acme
max_upload_size
id870477
size172,549
Franz Heinzmann (Frando)

documentation

https://docs.rs/tokio-rustls-acme

README

tokio-rustls-acme

Automatic TLS certificate management using rustls with ring.

Crates.io version Download docs.rs docs

API Docs


Original implementation based on https://github.com/FlorianUekermann/rustls-acme.

An easy-to-use, async compatible ACME client library using rustls with ring. The validation mechanism used is tls-alpn-01, which allows serving acme challenge responses and regular TLS traffic on the same port.

Is designed to use the tokio runtime, if you need support for other runtimes take a look at the original implementation rustls-acme.

No persistent tasks are spawned under the hood and the certificate acquisition/renewal process is folded into the streams and futures being polled by the library user.

The goal is to provide a Let's Encrypt compatible TLS serving and certificate management using a simple and flexible stream based API.

This crate uses ring as rustls's backend, instead of aws-lc-rs. This generally makes it much easier to compile. If you'd like to use aws-lc-rs as rustls's backend, we're open to contributions with the necessary Cargo.toml changes and feature-flags to enable you to do so.

To use tokio-rustls-acme add the following lines to your Cargo.toml:

[dependencies]
tokio-rustls-acme = "*"

High-level API

The high-level API consists of a single stream Incoming of incoming TLS connection. Polling the next future of the stream takes care of acquisition and renewal of certificates, as well as accepting TLS connections, which are handed over to the caller on success.

use tokio::io::AsyncWriteExt;
use futures::StreamExt;
use tokio_rustls_acme::{AcmeConfig, caches::DirCache};
use tokio_stream::wrappers::TcpListenerStream;

#[tokio::main]
async fn main() {
    simple_logger::init_with_level(log::Level::Info).unwrap();

    let tcp_listener = tokio::net::TcpListener::bind("[::]:443").await.unwrap();
    let tcp_incoming = TcpListenerStream::new(tcp_listener);

    let mut tls_incoming = AcmeConfig::new(["example.com"])
        .contact_push("mailto:admin@example.com")
        .cache(DirCache::new("./rustls_acme_cache"))
        .incoming(tcp_incoming, Vec::new());

    while let Some(tls) = tls_incoming.next().await {
        let mut tls = tls.unwrap();
        tokio::spawn(async move {
            tls.write_all(HELLO).await.unwrap();
            tls.shutdown().await.unwrap();
        });
    }
}

const HELLO: &'static [u8] = br#"HTTP/1.1 200 OK
Content-Length: 11
Content-Type: text/plain; charset=utf-8

Hello Tls!"#;

examples/high_level.rs implements a "Hello Tls!" server similar to the one above, which accepts domain, port and cache directory parameters.

Note that all examples use the let's encrypt staging directory by default. The production directory imposes strict rate limits, which are easily exhausted accidentally during testing and development. For testing with the staging directory you may open https://<your domain>:<port> in a browser that allows TLS connections to servers signed by an untrusted CA (in Firefox click "Advanced..." -> "Accept the Risk and Continue").

Low-level Rustls API

For users who may want to interact with [rustls] or [tokio-rustls] directly, the library exposes the underlying certificate management AcmeState as well as a matching resolver ResolvesServerCertAcme which implements the rustls::server::ResolvesServerCert trait. See the server_low_level example on how to use the low-level API directly with [tokio-rustls].

Account and certificate caching

A production server using the let's encrypt production directory must implement both account and certificate caching to avoid exhausting the let's encrypt API rate limits. A file based cache using a cache directory is provided by caches::DirCache. Caches backed by other persistence layers may be implemented using the Cache trait, or the underlying CertCache, AccountCache traits (contributions welcome). caches::CompositeCache provides a wrapper to combine two implementors of CertCache and AccountCache into a single Cache.

Note, that the error type parameters of the cache carries over to some other types in this crate via the AcmeConfig they are added to. If you want to avoid different specializations based on cache type use the AcmeConfig::cache_with_boxed_err method to construct the an AcmeConfig object.

The acme module

The underlying implementation of an async acme client may be useful to others and is exposed as a module. It is incomplete (contributions welcome) and not covered by any stability promises.

Special thanks

This crate was inspired by the autocert package for Go.

The original implementation of this crate can be found at FlorianUekermann/rustls-acme, this is just a version focused on supporting only tokio.

This crate also builds on the excellent work of the authors of rustls, tokio-rustls and many others.

License

This project is licensed under either of

at your option.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.

Commit count: 52

cargo fmt