Crates.io | tongrams |
lib.rs | tongrams |
version | 0.1.4 |
source | src |
created_at | 2022-01-02 01:47:23.156389 |
updated_at | 2022-01-13 08:05:57.647879 |
description | Tons of N-grams |
homepage | https://github.com/kampersanda/tongrams-rs |
repository | https://github.com/kampersanda/tongrams-rs |
max_upload_size | |
id | 506379 |
size | 76,108 |
tongrams
: Tons of N-gramstongrams
is a crate to index and query large language models in compressed space, in which the data structures are presented in the following papers:
Giulio Ermanno Pibiri and Rossano Venturini, Efficient Data Structures for Massive N-Gram Datasets. In Proceedings of the 40th ACM Conference on Research and Development in Information Retrieval (SIGIR 2017), pp. 615-624.
Giulio Ermanno Pibiri and Rossano Venturini, Handling Massive N-Gram Datasets Efficiently. ACM Transactions on Information Systems (TOIS), 37.2 (2019): 1-41.
This is a Rust port of tongrams
C++ library.
Store N-gram language models with frequency counts.
Look up N-grams to get the frequency counts.
Compressed language model. tongrams-rs
can store large N-gram language models in very compressed space. For example, the word N-gram datasets (N=1..5) in test_data
are stored in only 2.6 bytes per gram.
Time and memory efficiency. tongrams-rs
employs Elias-Fano Trie, which cleverly encodes a trie data structure consisting of N-grams through Elias-Fano codes, enabling fast lookups in compressed space.
Pure Rust. tongrams-rs
is written only in Rust and can be easily pluged into your Rust codes.
To use tongrams
, depend on it in your Cargo manifest:
# Cargo.toml
[dependencies]
tongrams = "0.1"
The file format of N-gram counts files is the same as that used in tongrams
, a modified Google format, where
<number_of_grams>
indicates the number of N-grams in the file,<gram>
are sparated by a space (e.g., the same time
), and<gram>
and the count <count>
are sparated by a horizontal tab.<number_of_grams>
<gram1><TAB><count1>
<gram2><TAB><count2>
<gram3><TAB><count3>
...
For example,
61516
the // parent 1
the function is 22
the function a 4
the function to 1
the function and 1
...
The following code uses datasets in test_data
at the root of this repository.
use tongrams::EliasFanoTrieCountLm;
// File names of N-grams.
let filenames = vec![
"../test_data/1-grams.sorted.gz",
"../test_data/2-grams.sorted.gz",
"../test_data/3-grams.sorted.gz",
];
// Builds the language model from n-gram counts files.
let lm = EliasFanoTrieCountLm::from_gz_files(&filenames).unwrap();
// Creates the instance for lookup.
let mut lookuper = lm.lookuper();
// Gets the count of a query N-gram written in a space-separated string.
assert_eq!(lookuper.with_str("vector"), Some(182));
assert_eq!(lookuper.with_str("in order"), Some(47));
assert_eq!(lookuper.with_str("the same memory"), Some(8));
assert_eq!(lookuper.with_str("vector is array"), None);
// Gets the count of a query N-gram formed by a string array.
assert_eq!(lookuper.with_tokens(&["vector"]), Some(182));
assert_eq!(lookuper.with_tokens(&["in", "order"]), Some(47));
assert_eq!(lookuper.with_tokens(&["the", "same", "memory"]), Some(8));
assert_eq!(lookuper.with_tokens(&["vector", "is", "array"]), None);
// Serializes the index into a writable stream.
let mut data = vec![];
lm.serialize_into(&mut data).unwrap();
// Deserializes the index from a readable stream.
let other = EliasFanoTrieCountLm::deserialize_from(&data[..]).unwrap();
assert_eq!(lm.num_orders(), other.num_orders());
assert_eq!(lm.num_grams(), other.num_grams());
This library is free software provided under MIT.