| Crates.io | usls |
| lib.rs | usls |
| version | 0.1.0-rc.1 |
| created_at | 2024-03-29 08:55:26.966917+00 |
| updated_at | 2025-06-10 12:13:09.84083+00 |
| description | A Rust library integrated with ONNXRuntime, providing a collection of ML models. |
| homepage | |
| repository | https://github.com/jamjamjon/usls |
| max_upload_size | |
| id | 1189797 |
| size | 1,011,529 |
usls is a cross-platform Rust library powered by ONNX Runtime for efficient inference of SOTA vision and multi-modal models(typically under 1B parameters).
# CPU
cargo run -r --example yolo -- --task detect --ver 8 --scale n --dtype fp16 # q8, q4, q4f16
# NVIDIA CUDA
cargo run -r -F cuda --example yolo -- --device cuda:0 # YOLOv8-n detect by default
# NVIDIA TensorRT
cargo run -r -F tensorrt --example yolo -- --device tensorrt:0
# Apple Silicon CoreML
cargo run -r -F coreml --example yolo -- --device coreml
# Intel OpenVINO
cargo run -r -F openvino -F ort-load-dynamic --example yolo -- --device openvino:CPU
# And other EPs...
Add the following to your Cargo.toml:
[dependencies]
# Recommended: Use GitHub version
usls = { git = "https://github.com/jamjamjon/usls", features = [ "cuda" ] }
# Alternative: Use crates.io version
usls = "latest-version"
| Model | Task / Description | Example |
|---|---|---|
| BEiT | Image Classification | demo |
| ConvNeXt | Image Classification | demo |
| FastViT | Image Classification | demo |
| MobileOne | Image Classification | demo |
| DeiT | Image Classification | demo |
| DINOv2 | Vision Embedding | demo |
| YOLOv5 | Image Classification Object Detection Instance Segmentation |
demo |
| YOLOv6 | Object Detection | demo |
| YOLOv7 | Object Detection | demo |
| YOLOv8 YOLO11 |
Object Detection Instance Segmentation Image Classification Oriented Object Detection Keypoint Detection |
demo |
| YOLOv9 | Object Detection | demo |
| YOLOv10 | Object Detection | demo |
| YOLOv12 | Object Detection | demo |
| RT-DETR | Object Detection | demo |
| RF-DETR | Object Detection | demo |
| PP-PicoDet | Object Detection | demo |
| DocLayout-YOLO | Object Detection | demo |
| D-FINE | Object Detection | demo |
| DEIM | Object Detection | demo |
| RTMPose | Keypoint Detection | demo |
| DWPose | Keypoint Detection | demo |
| RTMW | Keypoint Detection | demo |
| RTMO | Keypoint Detection | demo |
| SAM | Segment Anything | demo |
| SAM2 | Segment Anything | demo |
| MobileSAM | Segment Anything | demo |
| EdgeSAM | Segment Anything | demo |
| SAM-HQ | Segment Anything | demo |
| FastSAM | Instance Segmentation | demo |
| YOLO-World | Open-Set Detection With Language | demo |
| GroundingDINO | Open-Set Detection With Language | demo |
| CLIP | Vision-Language Embedding | demo |
| jina-clip-v1 | Vision-Language Embedding | demo |
| jina-clip-v2 | Vision-Language Embedding | demo |
| mobileclip | Vision-Language Embedding | demo |
| BLIP | Image Captioning | demo |
| DB(PaddleOCR-Det) | Text Detection | demo |
| FAST | Text Detection | demo |
| LinkNet | Text Detection | demo |
| SVTR(PaddleOCR-Rec) | Text Recognition | demo |
| SLANet | Tabel Recognition | demo |
| TrOCR | Text Recognition | demo |
| YOLOPv2 | Panoptic Driving Perception | demo |
| DepthAnything v1 DepthAnything v2 |
Monocular Depth Estimation | demo |
| DepthPro | Monocular Depth Estimation | demo |
| MODNet | Image Matting | demo |
| Sapiens | Foundation for Human Vision Models | demo |
| Florence2 | a Variety of Vision Tasks | demo |
| Moondream2 | Open-Set Object Detection Open-Set Keypoints Detection Image Caption Visual Question Answering |
demo |
| OWLv2 | Open-Set Object Detection | demo |
| SmolVLM(256M, 500M) | Visual Question Answering | demo |
| RMBG(1.4, 2.0) | Image Segmentation Background Removal |
demo |
| BEN2 | Image Segmentation Background Removal |
demo |
| MediaPipe: Selfie-segmentation | Image Segmentation | demo |
ort-download-binaries (default): Automatically downloads prebuilt ONNXRuntime binaries for supported platforms
ort-load-dynamic: Dynamic linking to ONNXRuntime libraries (Guide)
video: Enable video stream reading and writing (via video-rs and minifb)
cuda: NVIDIA CUDA GPU acceleration support
tensorrt: NVIDIA TensorRT optimization for inference acceleration
coreml: Apple CoreML acceleration for macOS/iOS devices
openvino: Intel OpenVINO toolkit for CPU/GPU/VPU acceleration
onednn: Intel oneDNN (formerly MKL-DNN) for CPU optimization
directml: Microsoft DirectML for Windows GPU acceleration
xnnpack: Google XNNPACK for mobile and edge device optimization
rocm: AMD ROCm platform for GPU acceleration
cann: Huawei CANN (Compute Architecture for Neural Networks) support
rknpu: Rockchip NPU acceleration
acl: Arm Compute Library for Arm processors
nnapi: Android Neural Networks API support
armnn: Arm NN inference engine
tvm: Apache TVM tensor compiler stack
qnn: Qualcomm Neural Network SDK
migraphx: AMD MIGraphX for GPU acceleration
vitis: Xilinx Vitis AI for FPGA acceleration
azure: Azure Machine Learning integration
See issues or open a new discussion.
Contributions are welcome! If you have suggestions, bug reports, or want to add new features or models, feel free to open an issue or submit a pull request.
This project is licensed under LICENSE.