vinyana

Crates.iovinyana
lib.rsvinyana
version0.3.1
sourcesrc
created_at2021-11-12 19:00:56.038012
updated_at2023-03-13 07:17:00.268191
descriptionA neural network library written in Rust
homepage
repositoryhttps://github.com/alxolr/vinyana
max_upload_size
id481043
size12,342
Alexandru Olaru (alxolr)

documentation

README

vinyana@0.3.1 Build Statuscodecov

vinyana - stands for mind in pali language.

Goal

The goal of this project is to create a neural network library that is easy to use and understand in rust.

Usage

use std::path::Path;

use rand::prelude::*;
use vinyana::{activation::ActivationType, NeuralNetwork};

fn main() {
    let mut nn = NeuralNetwork::new(vec![2, 2, 1]);

    nn.set_learning_rate(0.01); // default is 0.01 but you can change it
    nn.set_activation(ActivationType::Tanh); // default is Sigmoid but you can change it

    // We will train this network with 4 scenarios of XOR problem
    let scenarios = vec![
        (vec![1.0, 1.0], vec![0.0f32]),
        (vec![0.0, 1.0], vec![1.0]),
        (vec![1.0, 0.0], vec![1.0]),
        (vec![0.0, 0.0], vec![0.0]),
    ];

    let mut rng = thread_rng();
    for _ in 0..500000 {
        let random = rng.gen_range(0..4) as usize;
        let (train_data, target_data) = scenarios.get(random).unwrap();

        // we will pick a random scenario from the dataset and feed it to the network with the expected target
        nn.train(train_data.clone(), target_data.clone())
    }

    let result = nn.predict(vec![1.0, 0.0]);
    println!("Result: {:?}", result);

    // we can store our trained model and play with it later
    nn.save(Path::new("xor_model.nn")).unwrap();
}
// Load your model from file

let nn = NeuralNetwork::load(Path::new("xor_model.nn")).unwrap();

let result = nn.predict(vec![1.0, 1.0]);
println!("{:?}", result);
Commit count: 17

cargo fmt