Crates.io | worker |
lib.rs | worker |
version | |
source | src |
created_at | 2016-03-24 12:38:34.403568 |
updated_at | 2024-12-11 21:43:50.227196 |
description | A Rust SDK for writing Cloudflare Workers. |
homepage | |
repository | https://github.com/cloudflare/workers-rs |
max_upload_size | |
id | 4546 |
Cargo.toml error: | TOML parse error at line 19, column 1 | 19 | autolib = false | ^^^^^^^ unknown field `autolib`, expected one of `name`, `version`, `edition`, `authors`, `description`, `readme`, `license`, `repository`, `homepage`, `documentation`, `build`, `resolver`, `links`, `default-run`, `default_dash_run`, `rust-version`, `rust_dash_version`, `rust_version`, `license-file`, `license_dash_file`, `license_file`, `licenseFile`, `license_capital_file`, `forced-target`, `forced_dash_target`, `autobins`, `autotests`, `autoexamples`, `autobenches`, `publish`, `metadata`, `keywords`, `categories`, `exclude`, `include` |
size | 0 |
Work-in-progress ergonomic Rust bindings to Cloudflare Workers environment. Write your entire worker in Rust!
Read the Notes and FAQ
use worker::*;
#[event(fetch)]
pub async fn main(req: Request, env: Env, _ctx: worker::Context) -> Result<Response> {
console_log!(
"{} {}, located at: {:?}, within: {}",
req.method().to_string(),
req.path(),
req.cf().unwrap().coordinates().unwrap_or_default(),
req.cf().unwrap().region().unwrap_or("unknown region".into())
);
if !matches!(req.method(), Method::Post) {
return Response::error("Method Not Allowed", 405);
}
if let Some(file) = req.form_data().await?.get("file") {
return match file {
FormEntry::File(buf) => {
Response::ok(&format!("size = {}", buf.bytes().await?.len()))
}
_ => Response::error("`file` part of POST form must be a file", 400),
};
}
Response::error("Bad Request", 400)
}
The project uses wrangler for running and publishing your Worker.
Use cargo generate to start from a template:
$ cargo generate cloudflare/workers-rs
There are several templates to chose from. You should see a new project layout with a src/lib.rs
.
Start there! Use any local or remote crates and modules (as long as they compile to the wasm32-unknown-unknown
target).
Once you're ready to run your project, run your worker locally:
npx wrangler dev
Finally, go live:
# configure your routes, zones & more in your worker's `wrangler.toml` file
npx wrangler deploy
If you would like to have wrangler
installed on your machine, see instructions in wrangler repository.
http
Featureworker
0.0.21
introduced an http
feature flag which starts to replace custom types with widely used types from the http
crate.
This makes it much easier to use crates which use these standard types such as axum
and hyper
.
This currently does a few things:
Body
, which implements http_body::Body
and is a simple wrapper around web_sys::ReadableStream
.req
argument when using the [event(fetch)]
macro becomes http::Request<worker::Body>
.http::Response<B>
where B
can be any http_body::Body<Data=Bytes>
.Fetcher::fetch_request
is http::Request<worker::Body>
.Fetcher::fetch_request
is Result<http::Response<worker::Body>>
.The end result is being able to use frameworks like axum
directly (see example):
pub async fn root() -> &'static str {
"Hello Axum!"
}
fn router() -> Router {
Router::new().route("/", get(root))
}
#[event(fetch)]
async fn fetch(
req: HttpRequest,
_env: Env,
_ctx: Context,
) -> Result<http::Response<axum::body::Body>> {
Ok(router().call(req).await?)
}
We also implement try_from
between worker::Request
and http::Request<worker::Body>
, and between worker::Response
and http::Response<worker::Body>
. This allows you to convert your code incrementally if it is tightly coupled to the original types.
Router
:Parameterize routes and access the parameter values from within a handler. Each handler function takes a
Request
, and a RouteContext
. The RouteContext
has shared data, route params, Env
bindings, and more.
use serde::{Deserialize, Serialize};
use worker::*;
#[event(fetch)]
pub async fn main(req: Request, env: Env, _ctx: worker::Context) -> Result<Response> {
// Create an instance of the Router, which can use parameters (/user/:name) or wildcard values
// (/file/*pathname). Alternatively, use `Router::with_data(D)` and pass in arbitrary data for
// routes to access and share using the `ctx.data()` method.
let router = Router::new();
// useful for JSON APIs
#[derive(Deserialize, Serialize)]
struct Account {
id: u64,
// ...
}
router
.get_async("/account/:id", |_req, ctx| async move {
if let Some(id) = ctx.param("id") {
let accounts = ctx.kv("ACCOUNTS")?;
return match accounts.get(id).json::<Account>().await? {
Some(account) => Response::from_json(&account),
None => Response::error("Not found", 404),
};
}
Response::error("Bad Request", 400)
})
// handle files and fields from multipart/form-data requests
.post_async("/upload", |mut req, _ctx| async move {
let form = req.form_data().await?;
if let Some(entry) = form.get("file") {
match entry {
FormEntry::File(file) => {
let bytes = file.bytes().await?;
}
FormEntry::Field(_) => return Response::error("Bad Request", 400),
}
// ...
if let Some(permissions) = form.get("permissions") {
// permissions == "a,b,c,d"
}
// or call `form.get_all("permissions")` if using multiple entries per field
}
Response::error("Bad Request", 400)
})
// read/write binary data
.post_async("/echo-bytes", |mut req, _ctx| async move {
let data = req.bytes().await?;
if data.len() < 1024 {
return Response::error("Bad Request", 400);
}
Response::from_bytes(data)
})
.run(req, env).await
}
All "bindings" to your script (Durable Object & KV Namespaces, Secrets, Variables and Version) are
accessible from the env
parameter provided to both the entrypoint (main
in this example), and to
the route handler callback (in the ctx
argument), if you use the Router
from the worker
crate.
use worker::*;
#[event(fetch, respond_with_errors)]
pub async fn main(req: Request, env: Env, _ctx: worker::Context) -> Result<Response> {
utils::set_panic_hook();
let router = Router::new();
router
.on_async("/durable", |_req, ctx| async move {
let namespace = ctx.durable_object("CHATROOM")?;
let stub = namespace.id_from_name("A")?.get_stub()?;
// `fetch_with_str` requires a valid Url to make request to DO. But we can make one up!
stub.fetch_with_str("http://fake_url.com/messages").await
})
.get("/secret", |_req, ctx| {
Response::ok(ctx.secret("CF_API_TOKEN")?.to_string())
})
.get("/var", |_req, ctx| {
Response::ok(ctx.var("BUILD_NUMBER")?.to_string())
})
.post_async("/kv", |_req, ctx| async move {
let kv = ctx.kv("SOME_NAMESPACE")?;
kv.put("key", "value")?.execute().await?;
Response::empty()
})
.run(req, env).await
}
For more information about how to configure these bindings, see:
To define a Durable Object using the worker
crate you need to implement the DurableObject
trait
on your own struct. Additionally, the #[durable_object]
attribute macro must be applied to both
your struct definition and the trait impl
block for it.
use worker::*;
#[durable_object]
pub struct Chatroom {
users: Vec<User>,
messages: Vec<Message>,
state: State,
env: Env, // access `Env` across requests, use inside `fetch`
}
#[durable_object]
impl DurableObject for Chatroom {
fn new(state: State, env: Env) -> Self {
Self {
users: vec![],
messages: vec![],
state: state,
env,
}
}
async fn fetch(&mut self, _req: Request) -> Result<Response> {
// do some work when a worker makes a request to this DO
Response::ok(&format!("{} active users.", self.users.len()))
}
}
You'll need to "migrate" your worker script when it's published so that it is aware of this new
Durable Object, and include a binding in your wrangler.toml
.
wrangler.toml
file:# ...
[durable_objects]
bindings = [
{ name = "CHATROOM", class_name = "Chatroom" } # the `class_name` uses the Rust struct identifier name
]
[[migrations]]
tag = "v1" # Should be unique for each entry
new_classes = ["Chatroom"] # Array of new classes
As queues are in beta you need to enable the queue
feature flag.
Enable it by adding it to the worker dependency in your Cargo.toml
:
worker = {version = "...", features = ["queue"]}
use worker::*;
use serde::{Deserialize, Serialize};
#[derive(Serialize, Debug, Clone, Deserialize)]
pub struct MyType {
foo: String,
bar: u32,
}
// Consume messages from a queue
#[event(queue)]
pub async fn main(message_batch: MessageBatch<MyType>, env: Env, _ctx: Context) -> Result<()> {
// Get a queue with the binding 'my_queue'
let my_queue = env.queue("my_queue")?;
// Deserialize the message batch
let messages = message_batch.messages()?;
// Loop through the messages
for message in messages {
// Log the message and meta data
console_log!(
"Got message {:?}, with id {} and timestamp: {}",
message.body(),
message.id(),
message.timestamp().to_string()
);
// Send the message body to the other queue
my_queue.send(message.body()).await?;
// Ack individual message
message.ack();
// Retry individual message
message.retry();
}
// Retry all messages
message_batch.retry_all();
// Ack all messages
message_batch.ack_all();
Ok(())
}
You'll need to ensure you have the correct bindings in your wrangler.toml
:
# ...
[[queues.consumers]]
queue = "myqueueotherqueue"
max_batch_size = 10
max_batch_timeout = 30
[[queues.producers]]
queue = "myqueue"
binding = "my_queue"
workers-rs
has experimental support for Workers RPC.
For now, this relies on JavaScript bindings and may require some manual usage of wasm-bindgen
.
Not all features of RPC are supported yet (or have not been tested), including:
Writing an RPC server with workers-rs
is relatively simple. Simply export methods using wasm-bindgen
. These
will be automatically detected by worker-build
and made available to other Workers. See
example.
Creating types and bindings for invoking another Worker's RPC methods is a bit more involved. You will need to
write more complex wasm-bindgen
bindings and some boilerplate to make interacting with the RPC methods more
idiomatic. See example.
With manually written bindings, it should be possible to support non-primitive argument and return types, using
serde-wasm-bindgen
.
There are many routes that can be taken to describe RPC interfaces. Under the hood, Workers RPC uses Cap'N Proto. A possible future direction is for Wasm guests to include Cap'N Proto serde support and speak directly to the RPC protocol, bypassing JavaScript. This would likely involve defining the RPC interface in Cap'N Proto schema and generating Rust code from that.
Another popular interface schema in the WebAssembly community is
WIT. This is a lightweight format
designed for the WebAssembly Component model. workers-rs
includes an experimental code generator which
allows you to describe your RPC interface using WIT and generate JavaScript bindings as shown in the
rpc-client example. The easiest way to use this code generator is using a build script as shown in the example.
This code generator is pre-alpha, with no support guarantee, and implemented only for primitive types at this time.
In order to test your Rust worker locally, the best approach is to use Miniflare. However, because Miniflare is a Node package, you will need to write your end-to-end tests in JavaScript or TypeScript in your project. The official documentation for writing tests using Miniflare is available here. This documentation being focused on JavaScript / TypeScript codebase, you will need to configure as follows to make it work with your Rust-based, WASM-generated worker:
devDependencies
npm install --save-dev wrangler miniflare
Make sure that your worker is built before running your tests by calling the following in your build chain:
wrangler deploy --dry-run
By default, this should build your worker under the ./build/
directory at the
root of your project.
To instantiate the Miniflare
testing instance in your tests, make sure to
configure its scriptPath
option to the relative path of where your JavaScript
worker entrypoint was generated, and its moduleRules
so that it is able to
resolve the *.wasm
file imported from that JavaScript worker:
// test.mjs
import assert from "node:assert";
import { Miniflare } from "miniflare";
const mf = new Miniflare({
scriptPath: "./build/worker/shim.mjs",
modules: true,
modulesRules: [
{ type: "CompiledWasm", include: ["**/*.wasm"], fallthrough: true }
]
});
const res = await mf.dispatchFetch("http://localhost");
assert(res.ok);
assert.strictEqual(await res.text(), "Hello, World!");
As D1 databases are in alpha, you'll need to enable the d1
feature on the worker
crate.
worker = { version = "x.y.z", features = ["d1"] }
use worker::*;
#[derive(Deserialize)]
struct Thing {
thing_id: String,
desc: String,
num: u32,
}
#[event(fetch, respond_with_errors)]
pub async fn main(request: Request, env: Env, _ctx: Context) -> Result<Response> {
Router::new()
.get_async("/:id", |_, ctx| async move {
let id = ctx.param("id").unwrap()?;
let d1 = ctx.env.d1("things-db")?;
let statement = d1.prepare("SELECT * FROM things WHERE thing_id = ?1");
let query = statement.bind(&[id])?;
let result = query.first::<Thing>(None).await?;
match result {
Some(thing) => Response::from_json(&thing),
None => Response::error("Not found", 404),
}
})
.run(request, env)
.await
}
It is exciting to see how much is possible with a framework like this, by expanding the options
developers have when building on top of the Workers platform. However, there is still much to be
done. Expect a few rough edges, some unimplemented APIs, and maybe a bug or two here and there. It’s
worth calling out here that some things that may have worked in your Rust code might not work here -
it’s all WebAssembly at the end of the day, and if your code or third-party libraries don’t target
wasm32-unknown-unknown
, they can’t be used on Workers. Additionally, you’ve got to leave your
threaded async runtimes at home; meaning no Tokio or async_std support. However, async/await syntax
is still available and supported out of the box when you use the worker
crate.
We fully intend to support this crate and continue to build out its missing features, but your help and feedback is a must. We don’t like to build in a vacuum, and we’re in an incredibly fortunate position to have brilliant customers like you who can help steer us towards an even better product.
So give it a try, leave some feedback, and star the repo to encourage us to dedicate more time and resources to this kind of project.
If this is interesting to you and you want to help out, we’d be happy to get outside contributors started. We know there are improvements to be made such as compatibility with popular Rust HTTP ecosystem types (we have an example conversion for Headers if you want to make one), implementing additional Web APIs, utility crates, and more. In fact, we’re always on the lookout for great engineers, and hiring for many open roles - please take a look.
tokio
or async_std
runtimes?wasm32-unknown-unknown
target,
which is more limited in some ways than targets for x86 and ARM64.worker
crate doesn't have X! Why not?.wasm
binary as possible. Here are some extra
steps you can try: https://rustwasm.github.io/book/reference/code-size.html#optimizing-builds-for-code-size0.0.18
and higher0.0.18
an error "error[E0432]: unresolved import crate::sys::IoSourceState
" can appear.
In this case, upgrade package.edition
to edition = "2021"
in wrangler.toml
[package]
edition = "2021"
worker-sys
, worker-macros
, worker
) will be published automatically.Your feedback is welcome and appreciated! Please use the issue tracker to talk about potential implementations or make feature requests. If you're interested in making a PR, we suggest opening up an issue to talk about the change you'd like to make as early as possible.
event
and durable_object
macros for wrapping Rust entry point in a
fetch
method of an ES Module, and code generation to create and interact with Durable Objects.workers-rs
-based projects.