Crates.io | yap |
lib.rs | yap |
version | 0.12.0 |
source | src |
created_at | 2021-11-06 14:36:32.597994 |
updated_at | 2023-11-18 01:02:45.227426 |
description | Yet Another Parser library. A lightweight, dependency free, parser combinator inspired set of utility methods to help with parsing strings and slices. |
homepage | https://github.com/jsdw/yap |
repository | https://github.com/jsdw/yap |
max_upload_size | |
id | 477674 |
size | 116,239 |
This small, zero-dependency crate helps you to parse input strings and slices by building on the Iterator
interface.
The aim of this crate is to provide the sorts of functions you'd come to expect from a parser combinator library, but without immersing you into a world of parser combinators and forcing you to use a novel return type, library-provided errors or parser-combinator based control flow. we sacrifice some conciseness in exchange for simplicity.
Some specific features/goals:
Tokens
/Iterator
._err
variants incase you need error information when they don't otherwise hand back errors for simplicity.Tokens::offset
and Tokens::location()
.Tokens::location
),
and implement any of the provided functions using these primitives.Have a look at the Tokens
trait for all of the parsing methods made available, and examples for each.
Have a look in the examples
folder for more in depth examples.
use yap::{
// This trait has all of the parsing methods on it:
Tokens,
// Allows you to use `.into_tokens()` on strings and slices,
// to get an instance of the above:
IntoTokens
};
// Step 1: convert our input into something implementing `Tokens`
// ================================================================
let mut tokens = "10 + 2 x 12-4,foobar".into_tokens();
// Step 2: Parse some things from our tokens
// =========================================
#[derive(PartialEq,Debug)]
enum Op { Plus, Minus, Multiply }
#[derive(PartialEq,Debug)]
enum OpOrDigit { Op(Op), Digit(u32) }
// The `Tokens` trait builds on `Iterator`, so we get a `next` method.
fn parse_op(t: &mut impl Tokens<Item=char>) -> Option<Op> {
match t.next()? {
'-' => Some(Op::Minus),
'+' => Some(Op::Plus),
'x' => Some(Op::Multiply),
_ => None
}
}
// We also get other useful functions..
fn parse_digits(t: &mut impl Tokens<Item=char>) -> Option<u32> {
t.take_while(|c| c.is_digit(10))
.parse::<u32, String>()
.ok()
}
// As well as combinator functions like `sep_by_all` and `surrounded_by`..
let op_or_digit = tokens.sep_by_all(
|t| t.surrounded_by(
|t| parse_digits(t).map(OpOrDigit::Digit),
|t| { t.skip_while(|c| c.is_ascii_whitespace()); }
),
|t| parse_op(t).map(OpOrDigit::Op)
);
// Now we've parsed our input into OpOrDigits, let's calculate the result..
let mut current_op = Op::Plus;
let mut current_digit = 0;
for d in op_or_digit.into_iter() {
match d {
OpOrDigit::Op(op) => {
current_op = op
},
OpOrDigit::Digit(n) => {
match current_op {
Op::Plus => { current_digit += n },
Op::Minus => { current_digit -= n },
Op::Multiply => { current_digit *= n },
}
},
}
}
assert_eq!(current_digit, 140);
// Step 3: do whatever you like with the rest of the input!
// ========================================================
// This is available on the concrete type that strings
// are converted into (rather than on the `Tokens` trait):
let remaining = tokens.remaining();
assert_eq!(remaining, ",foobar");