Crates.io | yarnn |
lib.rs | yarnn |
version | 0.1.0 |
source | src |
created_at | 2019-07-15 13:41:33.184673 |
updated_at | 2019-07-15 13:41:33.184673 |
description | Yet Another rust Neural Network framework |
homepage | https://github.com/andreytkachenko/yarnn |
repository | https://github.com/andreytkachenko/yarnn |
max_upload_size | |
id | 149184 |
size | 134,287 |
Inspired by darknet
and leaf
std
(only alloc
for tensor allocations, bump allocator is ok, so it can be compiled to stm32f4 board)Linear
, ReLu
, Sigmoid
, Softmax
(no backward), Conv2d
, ZeroPadding2d
, MaxPool2d
, AvgPool2d
(no backward), Flatten
Sgd
, Adam
, RMSProp
CrossEntropy
(no forward), MeanSquareError
Native
, NativeBlas
(no convolution yet)yarnn
in browser using WASM
yarnn
on stm32f4
boardAvgPool2d
backpropogationDropout
layerBatchNorm
layerCUDA
supportOpenCL
supportDepthwiseConv2d
layerConv3d
layerDeconv2d
layerk210
backenduse yarnn::model;
use yarnn::layer::*;
use yarnn::layers::*;
model! {
MnistConvModel (h: u32, w: u32, c: u32) {
input_shape: (c, h, w),
layers: {
Conv2d<N, B, O> {
filters: 8
},
ReLu<N, B>,
MaxPool2d<N, B> {
pool: (2, 2)
},
Conv2d<N, B, O> {
filters: 8
},
ReLu<N, B>,
MaxPool2d<N, B> {
pool: (2, 2)
},
Flatten<N, B>,
Linear<N, B, O> {
units: 10
},
Sigmoid<N, B>
}
}
}