| Crates.io | yarnn |
| lib.rs | yarnn |
| version | 0.1.0 |
| created_at | 2019-07-15 13:41:33.184673+00 |
| updated_at | 2019-07-15 13:41:33.184673+00 |
| description | Yet Another rust Neural Network framework |
| homepage | https://github.com/andreytkachenko/yarnn |
| repository | https://github.com/andreytkachenko/yarnn |
| max_upload_size | |
| id | 149184 |
| size | 134,287 |
Inspired by darknet and leaf
std (only alloc for tensor allocations, bump allocator is ok, so it can be compiled to stm32f4 board)Linear, ReLu, Sigmoid, Softmax(no backward), Conv2d, ZeroPadding2d, MaxPool2d, AvgPool2d(no backward), FlattenSgd, Adam, RMSPropCrossEntropy(no forward), MeanSquareErrorNative, NativeBlas(no convolution yet)yarnn in browser using WASMyarnn on stm32f4 boardAvgPool2d backpropogationDropout layerBatchNorm layerCUDA supportOpenCL supportDepthwiseConv2d layerConv3d layerDeconv2d layerk210 backenduse yarnn::model;
use yarnn::layer::*;
use yarnn::layers::*;
model! {
MnistConvModel (h: u32, w: u32, c: u32) {
input_shape: (c, h, w),
layers: {
Conv2d<N, B, O> {
filters: 8
},
ReLu<N, B>,
MaxPool2d<N, B> {
pool: (2, 2)
},
Conv2d<N, B, O> {
filters: 8
},
ReLu<N, B>,
MaxPool2d<N, B> {
pool: (2, 2)
},
Flatten<N, B>,
Linear<N, B, O> {
units: 10
},
Sigmoid<N, B>
}
}
}